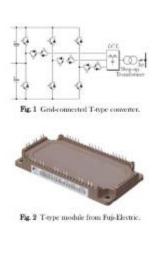
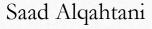


Members: Jafar Ahmad, Abdullah Alotaibi, Saad Alqahtani

Project: Grid connected T-Type converter

Client: Dr. Venkata Yaramasu





T-type motivation

The T-type converter is an advanced application of power electronics and renewable energy that solves problems of the NPC converter such as:

- uneven heat dissipation
- Switching losses between inner and outer IGBT

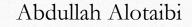
T-type advantages

- Bi-directional switching
- Three level output waveform
- Lower electromagnetic interferences
- Increased equivalent switching frequency
- Lower size of output harmonic filters
- Many more!

Saad Alqahtani

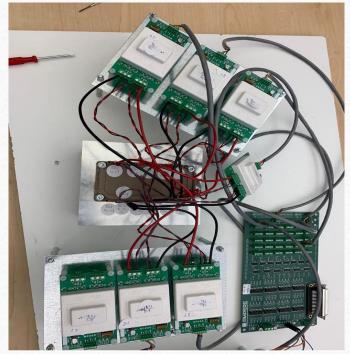
Requirements and constraints

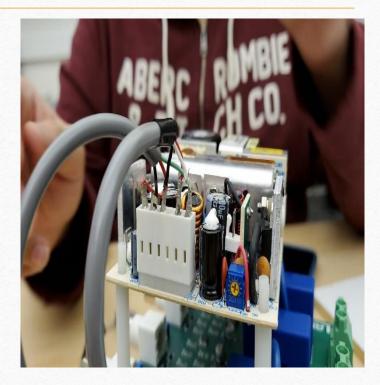
- The requirement for this project is to obtain experimental results of complete system with T-type converter, Modular Predictive Control and grid connection.
- As for the constraints the team had to:
 - Overcome noise issues with PCB design
 - Work with the Photovoltaic source
 - Work with grid currents



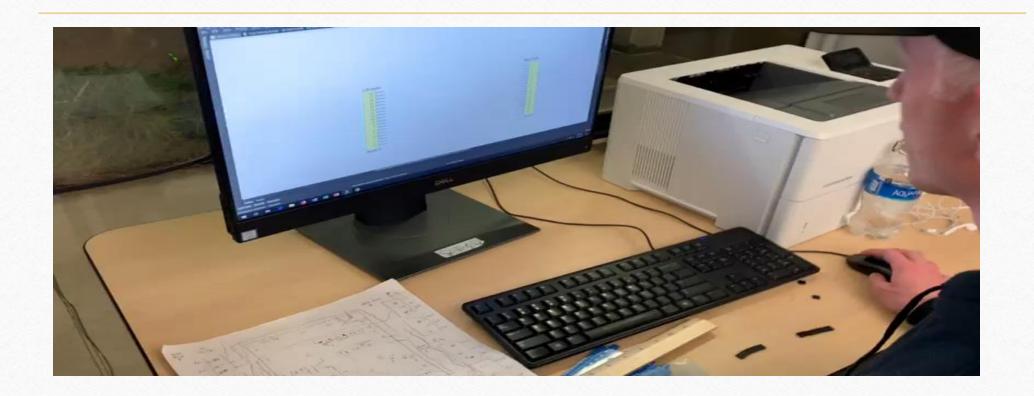
Prototypes

- Failed first attempt
- Rebuild the circuit from scratch
- More organized
- PCB
- Better understanding





Prototype examples



PCB Work

Gantt chart

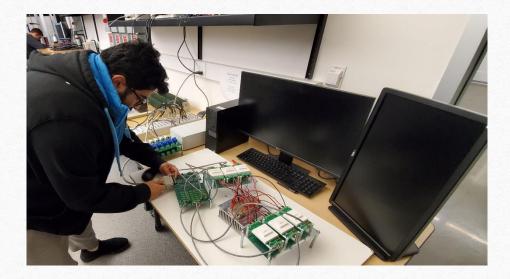
Tasks	10-20	20 Jan –	10 - 17	17 Feb –	13 - 20	20 Mar	6-13	13 - 27
	Jan	10 Feb	Feb	13 Mar	Mar	- 6	April	April
						April		
Voltage & Current boards and								
Interface boards								
Testing of T-type converter with								
classical control								
MATLAB Results & Data								
Analysis								
Refining circuitry & PCB design								
Connecting to the grid using a PV								
model								
Testing of T-type converter with								
MPC during grid-connection								
A full analysis of the full grid								
experiment								
Final Report format and Demo								

Jafar Ahmad

Subsystem 1: Circuitry progress

- figuring the connections
- Connecting the wires (G to T-type)
- Connecting from (T-type to interface board)
- Connecting the power supply to the grid
- Connecting the power supply to the stack (current, voltage and interface boards)
- Connecting the PCB to T-type

10 – 20 Jan, 17 Feb – 13 Mar Abdullah Alotaibi

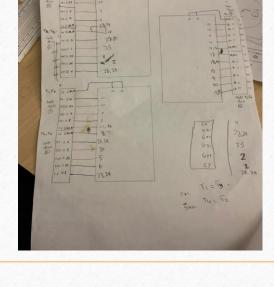


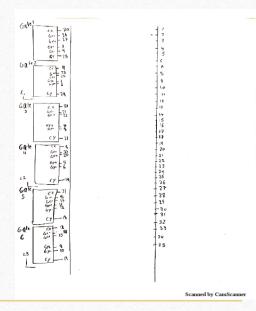
Subsystem 2: Matlab and dSPACE

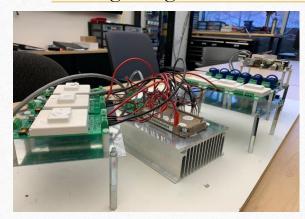
- Programming the dSPACE with MATLAB/Simulink
- Creating the code for Pulse Width Modulation (PWM)
- Creating the code for the grid experiment
- Creating the code for the PV module
- Connecting the dSPACE with the circuit

10 – 17 Feb, 6– 13 April Saad Alqahtani

MATLAB and dSPACE



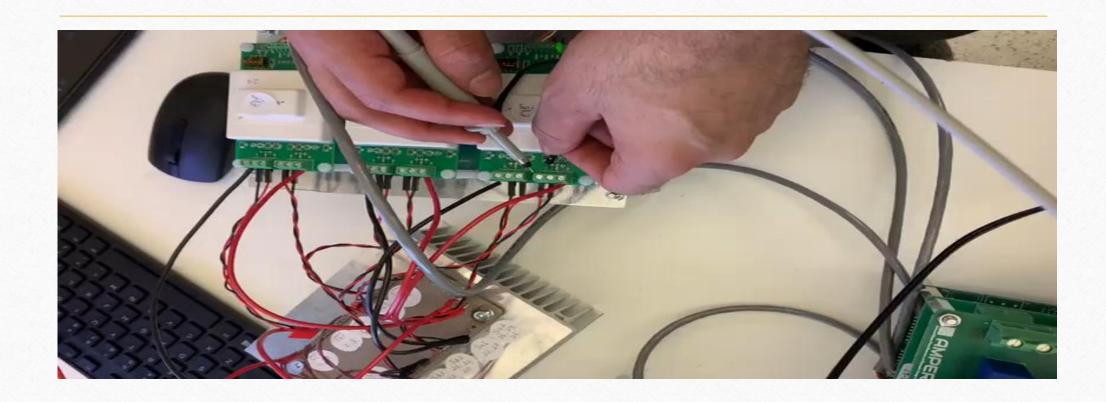




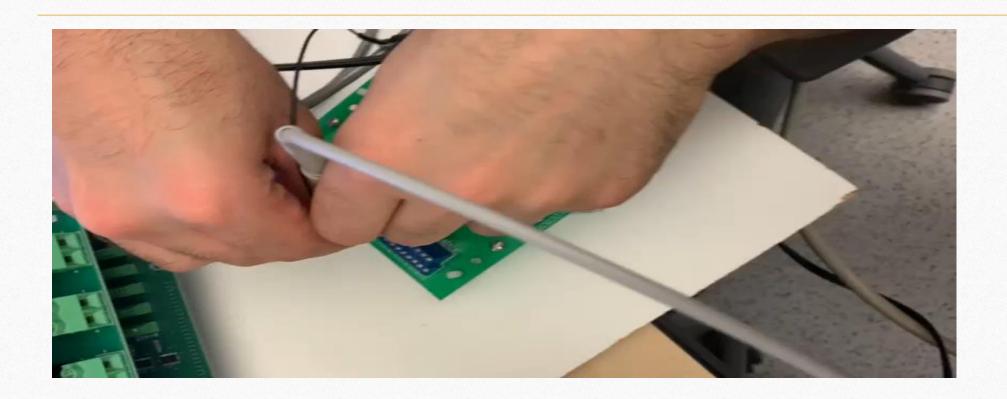
Subsystem 3: Testing and PCB design

- Confirming that the connections work
- Open circuit testing using PWM
- Debugging (a lot of debugging!)
- Re-testing after rebuilding the circuit
- Designing a Printed Circuit Board (PCB)
 - How?
 - Why?
- Testing the PV module using a 2L converter
- Testing using PV module with PCC and MPCC

17 Feb – 13 Mar, 20 Mar – 6 April Jafar Ahmad



Re-checking the connections



PWM Test

Conclusion

- Progression at this point
- Relation between subsystems
- For the next teams
- The goal and the result

Abdullah Alotaibi

